

艾叶中桉油精和龙脑的测定

SGLC-GC -033

摘要:本应用建立了艾叶中其桉油精和龙脑的测定方法。按照 2020《中国药典》 中方法,采用岛津色谱柱 SH-50 分析艾叶中桉油精和龙脑,2 个化合物峰形良好,目标物与相邻杂质色谱峰分离度 1.5 以上,龙脑的理论塔板数为 629637,大于药典要求的 50000,满足《中国药典》要求,此方法可为艾叶中桉油精和龙脑的同时测定提供参考。

关键词: 艾叶 桉油精 龙脑 SH-50 GC

1. 实验部分

1.1 实验仪器及耗材

仪器配置: 岛津气相色谱仪 Nexis GC-2030;

色谱柱: SH-50 (30m×0.25 mm, 0.25 μm , P/N: 227-36162-01; S/N: 1628510);

SHIMSEN Arc Disc HPTFE 针式过滤器(P/N: 380-00341-05);

GC-MS 认证样品瓶 LabTotal Vial (P/N: 227-34002-01);

SHIMSEN Pipet 移液枪: SHIMSEN Pipet PMII-10 (P/N: 380-00751-02);

SHIMSEN Pipet PMII-100 (P/N: 380-00751-04);

SHIMSEN Pipet PMII-1000 (P/N: 380-00751-06) 。

1.2 混合对照品溶液的制备

取桉油精对照品、龙脑对照品适量,精密称定,加乙酸乙酯制成每 1 mL 含桉油精 0.2 mg、龙脑 0.1 mg 的混合溶液,即得。

1.3 供试品溶液的制备

取艾叶适量,剪碎成约0.5 cm的碎片,取约2.5 g,精密称定,置圆底烧瓶中,加水300 mL,连接挥发油测定器。自测定器上端加水使充满刻度部分,并溢流入烧瓶时为止,再加乙酸乙酯2.5 mL连接回流冷凝管。加热至沸腾,再加热5小时,放冷,分取乙酸乙酯液,置10 mL量瓶中,用乙酸乙酯分次洗涤测定器及冷凝管,转入同一个量瓶中,用乙酸乙酯稀释至刻度,摇匀,即得。

1.4 分析条件

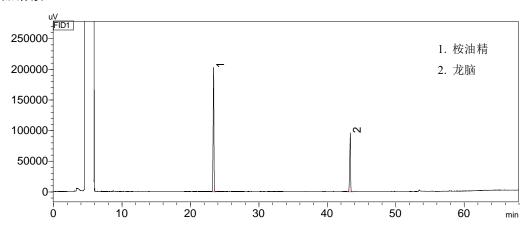
色谱柱: SH-50(30m×0.25 mm, 0.25 μm , P/N: 221-36162-01; S/N: 1628510)

升温程序:初始温度 45 °C,以 2 °C/min 升温到 75 °C,保持 5 分钟,再以 1 °C/min 升温到 90 °C,保持 6 min,以 5 °C/min 升温到 150 °C,再以 10 °C/min 升温到 250 °C,保持 5 min

载气: N2

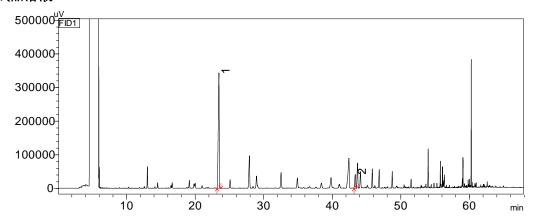
进样口温度: 240℃

分流模式:分流,分流比5:1


进样方式: 恒流模式 0.6 mL/min

检测器: FID, 温度: 250℃

2. 结果及讨论


按照上述色谱条件(1.4)进行采集,对照品溶液、供试品溶液色谱图如下:

对照品溶液

化合物名称	保留时间	峰面积	峰髙	理论塔板数	拖尾因子	分离度
桉油精	23.432	1625254	201449	199081	0.816	
龙脑	43.400	853751	94332	513882	0.751	88.306

供试品溶液

化合物名称	保留时间	峰面积	峰高	理论塔板数	拖尾因子	分离度
桉油精	23.501	3318988	340207	138113	0.711	
龙脑	43.391	369459	40631	629637	0.933	84.335

重现性

对照品溶液

保留时间(min)						面积(A		
峰号 数据	₩·田. 1	数据 2	数据3	RSD	数据1	数据 2	数据 3	RSD
	剱1佰 1	剱1店 4		(%)				(%)
1	23.432	23.433	23.430	0.01	1625254	1620851	1659739	1.30
2	43.400	43.403	43.394	0.01	853751	849765	866459	1.01

供试品溶液

保留时间(min)						面积(Area)				
峰号	数据 1	数据 2	数据 3	RSD (%)	数据 1	数据 2	数据 3	RSD (%)		
1	23.501	23.497	23.473	0.06	3318988	3306499	3297960	0.31		
2	43.391	43.393	43.365	0.03	369459	363932	361101	1.16		

3. 结论

本应用建立了艾叶中其桉油精和龙脑的测定方法。按照 2020《中国药典》 中方法,采用岛津色谱柱 SH-50 分析艾叶中桉油精和龙脑,2 个化合物峰形良好,目标物与相邻杂质色谱峰分离度 1.5 以上,龙脑的理论塔板数为 629637,大于药典要求的 50000,满足《中国药典》要求,此方法可为艾叶中桉油精和龙脑的同时测定提供参考。

